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Abstract. In two previous articles one of the authors gave formulas, with nu- 
merous examples, for summing a series either to infinity (complete) or up to a cer- 
tain number n of terms (partial) by considering the sum of the first j terms S, , or 
some suitable modification S , closely related to Sj , as a polynomial in 1/j. Either 
S. or S,, was found by m-point Lagrangian extrapolation from Sj, , Sjo-l 
Sjim+, to I/j = 0 or l/j = 1/n respectively. This present paper furnishes more 
accurate m-point formulas for sums (or sequences) Sj which behave as even func- 
tions of 1/j. Tables of Lagrangian extrapolation coefficients in the variable 1Ij2 
are given for: complete summation, m = 2(1)7, jo = 10, exactly and 20D, m = 11, 
jo = 20, 30D; partial summation, m = 7, jo 10, n = 11 (1)2(5) 100, 200, .;00, 
1000, exactly. Applications are made to calculating ir or the semi-perimeters of 
many-sided regular polygons, Euler's constant, 

_ _ _1 _ _ 1 1 

r=i (4r-1) + +41)2} 1 3- for jI= x 

(Catalan's constant), calculation of a definite integral as the limit of a suitably 
chosen sequence, determining later zeros of J.(x.r) from earlier zeros for suitable v, 
etc. A useful device in many cases involving sums of odd functions, is to replace Sj 
by a trapezoidal-type S. which is seen, from the Euler-AMaclaurin formula, to be 
formally a series in 1/j2. In almost every example, comparison with the earlier 
(1/j)-extrapolation showed these present fornmlas, for 7 points, to improve re- 
sults by anywhere from around 4 to 9 places. 

1. Introduction. In two earlier papers, [1, 21, one of the authors gave tables for 
both complete summation (all terms, to infinity) and partial summation (up to a 
certain number of terms) of certain kinds of slowly convergent series. In the case 
of partial summation, divergent series were also included, provided that a suitable 
auxiliary series could be found of the desired slowly convergent type and simply re- 
lated to the original divergent series. The essential idea in both cases is to regard 
the sequence Sj, the sum of the first j terms of the series, as the values for .c = 1 j 
of an interpolable function S(x) to which the slight extrapolation from specified 
Si, to j = X (x = 0) or to j = k (x = 1/k), k > jo where Sj, is the last speci- 
fied S., yields good accuracy. The approximating formula for S(.r) was an in-point 
Lagrange polynomial of the (m -1 )th degree in x which at x = I/j assumes the 
prescribed value Sj, for the last m values of j ending at jo = 5, 10, 13 or 20, from 
which we extrapolated to either j = oo (x = 0 ) or j = k > jo(x = 1 /k). Numerous 
examples which yielded surprisingly high accuracy for a variety of sequences S, in 
both complete and incomplete cases, attested to the wide applicability of consider- 
ing Sj a smooth function of 1/j, even when we were in complete ignorance as to the 
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actual analytic expression for Si = S(1/j) or of a theoretical justification for con- 
sidering S(1/j) as an approximate polynomial in 1/j. 

However, a still further improvement in m-point formulas for both complete 
and partial summation is applicable to a wide class of sequences where Si3 S(1/j) 
behaves like an even function of 1/j. Thus by taking x2 as argument instead of x, in 
an m-point Lagrangian extrapolation formula for x = 0 (complete summation) or 
a value close to 0 (partial summation) based upon those same final m values of Si, 
we should get accuracy equivalent to (2m - 1)th degree instead of (m - 1)th 
degree. As will be seen from the illustrations below, the resulting improvement is 
often quite impressive. 

There is no hard and fast classification of all the varied problems to which these 
newer formulas are applicable. The reason is that even if a problem does not seem 
offhand to involve a sequence of that even-function type, often with a very slight 
transformation, regrouping, or alteration, one sees that it really is amenable to this 
more accurate treatment. 

Of course, every sequence to which these improved extrapolation formulas for 
arguments 1/j2 are particularly applicable can also be handled by the earlier formulas 
employing arguments 1/j, because any polynomial in x2 is also a polynomial in x, 
but with considerably less accuracy for the same number m of points and the same 
last j = jo . But the converse is not true-we cannot in general expect these newer 
summation formulas to work well when applied indiscriminately to sequences where 
the earlier method may give very high accuracy. One way of realizing this is to 
think of the non-constant part of a well-behaved function of x near x = 0 being 
approximated by Cx. Extrapolation employing x2 = y as the variable, near x = 0, is 
like extrapolation for y based upon a polynomial approximation in the variable y. 
But, as anybody who has attempted to interpolate in a table of square roots near 
zero has found out, y-v, although continuous at y = 0, possesses a singularity due 
to an infinite derivative. 

2. Other Related Articles. The idea of the extrapolation to x = 0 for argument 
y = . has been employed for just the linear case in the well-known "h2-extrapola- 
tion process", or "deferred approach to the limit", which has been extensively 
treated in the literature on the numerical solution of differential equations (first 
introduced bv L. F. Richardson [3, 4]). The argument x or h corresponds to two 
conveniently small values of a mesh-length, say hi and h2. Richardson's process has 
been generalized to higher powers beyond h2 by several writers, notably G. Blanch, 
t5] and H. C. Bolton and H. I. Scoins [6]. However, the only reference that was en- 
countered by the writer which was concerned with problems where the approxima- 
tion might be considered as a purely even function of h having more than a single 
term, has been MI. G. Salvadori [7]. Besides some sets of 2-point coefficients for h2- 
and h4-extrapolation, Salvadori tabulates 3-point coefficients for (h2, h4)- and (h4, 
h6)- extrapolation, and 4-point coefficients for (h2, h4, h6)- and (h4, h6, h8)-extrapola- 
tion. The values of h are in the form 1/ni, where ni are sets of small integers rang- 
ing from 2 to 8. Salvadori gives applications to numerical differentiation and inte- 
gration, as well as to some boundary value problems and characteristic value 
problems. 
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3. Formulas for Complete Summation. In choosing a jo suitable for most com- 
plete summation purposes, we wish to obtain a substantial increase in accuracy 
over the use of the earlier formulas in [1], which has already been proved to be very 
accurate, without having coefficients that might be too cumbersome. It is also de- 
sirable to give exact values rather than decimal values, because in highly accurate 
formulas the theoretical or truncation error might be considerably smaller than the 
computing error arising from the use of rounded decimal entries. But we must also 
take account of the fact that the fixed points 1/12 in place of the older 1/j makes 
the exact fractional form of the extrapolation coefficients have around twice as 
many digits in both numerator and denominator, which adds considerably to the 
amount of time to do an example. 

In the present paper it seems that a very convenient choice is jo = 10, for all 
cases ranging from the 2-point through the 7-point. In other words we give formulas 
for linear through sextic Lagrangian extrapolation formulas for functions of the 
variable y = x2 taken at x = 1/j, or arguments y = 1/j2 at j = 10, 9, * * , 10- 

m + 1 for m = 2(1)7. This is equivalent to quadratic through twelfth degree 
accuracy for even functions in x = 1/j. The extrapolation formula to obtain the 
complete sum S from the partial sums S10, S9, * , Siom+l is the very simple 

m-1 

( 1 ) S~~~~~~.. E A " (om)jSjo_j 
i-O 

The coefficients A(') o are given in Table 1 in exact fractional form B(0)oi/D(8, 
so that (1) may be most conveniently employed as 

rn-i 

(2) S D(1/Df o)Z Bo01-is1oX. 
i=O 

In no case through m = 7, does D(o ) have more than ten digits exclusive of final 
zeros, which is convenient in the division. The values of A (f)o are given also to 20 
decimals in Table 2. 

Although the 7-point formulas for jo = 10 are very accurate, as will be apparent 
from the examples below, we give also in Table 3 for possible use in some kind of 
isolated key calculation where extreme accuracy is sought, even at the expense of 
considerable computing labor, the coefficients in the 11-point formula, ending at 
S20, given exactly, to be employed in 

10 

(3) S (1/D20) )j B20,2)0iS20_i. 
i=O 

Formula (3) is exact for any even polynomial in x = 1/j up to the 20th degree. To 
avoid too much non-essential numerical work, no illustrations were given of the 
use of Table 3, since the resulting accuracy is so high by comparison with the results 
of using Table 1 or 2, that an excessively large number of significant digits is needed 
to reveal its full extent. But Table 3 should be kept in reserve for a summation 
problem requiring unusual precision. 

The formula for Ao })oi is obtained rather simply from the well-known defini- 
tion of the m-point Lagrangian interpolation coefficients where we have fixed points 
1/jo2, 1/(jo - 1)2, , 1/(jo - m + 1)2 and set the variable y = X2 = 1/j2 equal 
to 0 to correspond to j = so . 



26 HERBERT E. SALZER AND GENEVIEVE M. KIMBRO 

TABLE 1 

(in) (in) (m) 

m =2 m = 5 

=_81 B(5) 2034 43488 
100 -0, RJn l10 - 100 B(O)7 = -23001 55599 

= 19 B(5) = 82879 44704 
B(og? = -1 17517 54833 

B(O)10 = 56875 OOOo0 
B(8 - 19456 D()= 1269 77760 
B(3)= -59049 

B()1 42500 m = 6 
D(3) = 2'307 

__ = 7B(O)5 -75703 12500 

m=-14 B(6= 17 57751 73632 

-67 05993 -~~~B(6 -123 97838 67861 
1](0)v = -67 0,599:37L B10,8 359 05926 59456 
1Bn8 = 398 B()9 = -448 74915 24087 

B(,9 -717 44535 B(O0= 200 20000 00000 
(4)10 - 400 00000 D(O; 3 35221 28640 
D(O)0= 1.'3 95360 

m =7 

B() = 54190 40768 
B(7)= -31 54296 87500 
R0)6 = 474 59296 88064 
B (7)= -2761 33679 65995 

(0)8 = 7181 18531 89120 
B(?9 = -8388 15723 34857 
BI010 = 3575 00000 00000 
D(7) = 50 28319 29600 

(4) 

AC,) 

- 

_n-i 

(1)m 1(jo -2 .~~~~_ .O 
- 

-) 

2 

(4) J OJC -iX-"_ 

JI' [(jo - k)2 - (jo -i)2] 
kAo 

where in fl', k = i is omitted. 

4. Illustrations of Complete Summation. 
A. Examnple 1. Considering the circle as the limiting case of inscribed regular 

polygons of j sides, as j -* o, the quantity ir is the limit of the semi-perimeter, 
j sin a, where a = 1800/j = w/j, asj - o .* Now the appro~amation Si = j sin a = 

* Although this example affords a splendid illustration of the improvement of (1/j2)- 

extrapolation over (1/j)-extrapolation, it suffers from the aesthetic defect of having the value 
of 7r occurring implicitly in ever Si in the various powers of a needed to compute sin a. In 
other words, there is definitely something "circular" in this example. 
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TABLE 2 

Alofo-i in Decimal Form 

m = 2 m=6 

A?(2)9 -4.26315 78947 36842 105264(8) 
(2) n)xR^A3OQ4at A 10.5 -O. 2258.3 03039 55a303 95o,530 

= ~~5.26315 78947 36842 105-26 = 03 533953 
________= ________________tJ__tfi lv0___ =A0)6 5.24355 64435 56443 55644 

m = 3 10)7( - -36.98404 36201 18987 7660.5 

A8~~I = ~6.69281 04575 16339 86928iA0, 10.11o794322"24 
A(3)s =A 6.98059 

6 133.86654 44631 80008 84.-64 
A109 = -20.31269 34984 52012 383901A10,9 1 6 3 0 8 

(3) 14.61988 30409 35672 514621 10,10 = 9.72174 44482 66636 08913 

m=4 m=7 

A(0)7= - 4.80592 32026 14379 08497 A(4 - 0.01077 70418 88152 99926 
A108 = 28.55599 12854 03050 10893A105 = -0.62730 63998 75844 32029 
A(49 = -51.41650 54179 56656 34675A (7) = 943840 15984 01598 40160 
A (4)= 28.66643 73351 67985 32278A - -54.91570 11329 03951 53140 

- - =_ 5 |A07,8 = 142.81482 33272 41627 89522 
m =-5 IAfo?9 = - 166.81830 92541 16626 40765 

A($0)6 = 1.60219 78021 97802 19780A (70 71.09731 48193 65042 96325 
A (50)7 = - 18.11463 36098 54198 08949 . 

A - 65.27083 72237 78400 24899 
=(5)- -92.54970 97523 21981 42415 

A(5)0 44.79130 83361 99977 06685| 

TABLE 3 
A t11 l) = B ' 11) (1/D(l1) 

20,20-i 20,20 20 

B(ol)= 74096 20000 00000 00000 00000 
B(11)= -35 37615 48335 31708 54782 90644 
B(11)= 649 45974 08685 61313 24915 22048 
B1)3 = -6200 60319 26092 91850 74192 35023 

Bqo,1 = 34801 60376 52150 35629 23772 47744 
B(11)= -1 21941 46052 37160 60638 42773 43750 
B(11)= 2 73659 70208 28851 47761 53823 64160 
B(O1)= -3 92511 27655 98026 11495 97941 97770 
B(18 3 47343 22454 05086 94470 03616 05120 

B(01)= -1 72481 59320 99496 29170 21217 51885 
B(01)= 36718 51008 00000 00000 00000 00000 

D(01) = (32124 40751)(38698 35264)(23 58125) 
= 2 93153 05663 14310 15219 20000 

S(1/j) is seen to be an even function of 1/j which equals ir for 1/j = 0. Therefore 
we expect an m-point Lagrange polynomial approximation for variable 1/j2 to be 
considerably more accurate than a polynomial in 1/j. Following are the values of 
the semi-perimeters j sin a to 25D, which were obtained from a table of sin a to 
30D originally published by Herrmann [8]. For j = 4(1'6, 9, 10, sin a was copied 
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from Herrmann's table, and for j = 7, 8, sin a was computed by Taylor's theorem 
employing Herrmann's entries as key values: 

j Si: Semi-perimeter-j sin a 

4 2.82842 71247 46190 09760 33774 
5 2.93892 62614 62365 64584 35298 
6 3.00000 00000 00000 00000 00000 
7 3.03718 61738 22906 84333 03783 
8 3.06146 74389 20718 17382 76799 
9 3.07818 12899 31018 59739 68965 

10 3.09016 99437 49474 24102 29342 

In the above values of Si , as well as Si given in the other examples, the accuracy 
of the last few places, although highly probable, is still not absolutely guaranteed. 
However, in every example the values of Si are certainly correct up to the number 
of places needed to guarantee that the "computational error" in the final answer 
(which is due to the error in the Si multiplied by the extrapolation coefficients 
A(in) is apprecial)ly less than the deviation of the answer from the true value. This 
latter "truncating error" is thus made to stand out clearly, and it indicates the 
theoretical accuracy of the extrapolation formula, regardless of the number of places 
carried in the work. In practice we do not often know at the outset of an example 
just how many palaces are iteeded in the Si to assure us that the computing error will 
be dominated lby the truncating error. Sometimes when the theoretical accuracy 
turns out to be unexpectedly fine, the example must be done again, carrying more 
places, to prevent fihe computing error from obscuring the truncating error. 

The results of the extrapolations employing (1) or (2), for m = 7, gave for 7r, 
(whose true value to 20D is 3.14159 26535 89793 23846), the answer 3.14159 
26535 8'9793 1779 ... which is correct to within a unit in the 16th decimal. The 
extent of the improvement over the earlier (1/j)-extrapolation formulas is appar- 
ent front the result of 3.1419) 280 ... obtained by the corresponding 7-point (1/j)- 
extrapolation coeflicients, which deviates from ir by 12 Units in the 7th decimal. In 
other words, the emror in the use of this newer formula is only around 0.4 10-9 of 

that in the older one. The greater power of this newer method in this present exam- 
ple may be further illustrated even for in = 4, where (1/j2)-extrapolation yields 
3.14159 265.0 ..or accuracy to around 4 of a unit in the 8th decimal, whereas 
the corresponding 4-point (1/j)-extrapolation formula gives no better than 3.1411 

which is off by 1 of a unit in the 3rd decimal. In fact, the answer even by 
2-point (1/j2 )-extrapolatiou, namely 3.141t) . . .,is still better than the above 

3.1411.... 
It is interesting to note that the use of (1/j) -extrapolation on the semi-perim- 

eters gives this great improvement only for the inscribed polygons, and it will not 
work well for the circitmiscribed polygons, upon which it was also tried. A reason 
that would lead us to expect poor extrapolation results, even though the corre- 
sponding semi-perimeter j tan a is still an even function of 1/j, is that the series 

for tan a converges poorly by comparison with sin a. Thus for a = 7r/4, occurring 
in Si = S4, the remainder after the term involving the sixth power of 1/12, is con- 
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siderably greater for j tan a, so that the use of (1) or (2) for m = 7 is not nearly 
so good as for j sin a. 

B. Example 2. The sequence for Euler's constant 

'y =limj,0cZ (1/r)-log jc 
= 0.57721 56649 01532 86061 to 20D 

has been treated earlier by (1/j)-extrapolation ([1], p. 358). Applying (1) or (2), 
for seven points, directly to Si = Vio (1/r) -log j yields the very inaccurate 
0.593, the reason being that Sj does not behave like an even function of 1/j. The 
older (1/j)-extrapolation formulas, employing jo = 10, gave 0.57721 41 ... and 
0.57721 56695 ... by the 4- and 7-point formulas with respective errors of around 
14.10-6 and 4-10-8. To improve upon these results we must modify our Sj se- 
quence into an even function of 1/j having the same limit -y. This is easily accom- 
plished by replacing the last 1/r in the summation, namely 1/r = 1/j, by half its 
value, or 1/2j. At first sight there is an apparent motivation in that the new finite 
summation is suggestive (at one end anyhow) of the more accurate trapezoidal 

rather than rectangular approximation to the integral f (1/r) dr. This trapezoidal 

motivation happens to lead to the correct choice in this present example, but in 
general it does not yield a sequence that is even in (1/j). The true motivation lies 
in the Euler-Maclaurin summation formula applied to log y. The general formula 
is expressible as 

|f = Gx2fo +fl +f2 + + fjh- + fj) - 12fi' -fe') 

3 5 
w ' W _ fo ) + ...[9]. + 7f0 -fo' 30240 (VJ ) 

Now (5) does not denote a complete equality, since the Euler-Maclaurin formula 
is an asymptotic expression that is given with a remainder term. Employing (5) 
heuristically for w 1, a = 1 and f(x) = 1/x, the right member of (5), exclusive 
of the (12fo + fi + + fi-1 + 4fj) and an undisclosed remainder term, is an even 
function of 1/(j + 1), from which, replacing j by j-1, 

A(llx)dx (2 + + + + + 1 

is an even function of 1/j, so that the same is true of the sequence 

sit_(1 + 1 + 
1 

+ **+. 11+ - log j 

whose limit, as j a-+ , is also equal to -y.* 
Since the older m-point (1/j)-extrapolation formula is linear in Si (or Si') and 

* The reader is cautioned that the above heuristic demonstration is not to be understood 
as a proof that we have a convergent infinite series in (1/j2) from which we can "prove" that 
the "constant" term in Si' is y by taking the limit as j m. The fallacy there would be in 
that there is no "constant" term because the fo, fo', fto", - * - terms in (5) yield for f(x) = l/x 
a divergent sequence. Actually S/ is defined only up to any fit:ed order derivative, say fP) 
and it then consists of terms in 1/j2, constant terms and an integral formula for the remainder. 
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yields exactly zero for any polynomial in 1/j having no constant term, up to the 
(m - 1)th degree, the above-mentioned 4- and 7-point results will not be changed 
by use of S/ instead of Si. But the improvement is very noticeable when Si' is 
employed with (1/j2)-extrapolation. Following are the terms in the modified 
sequence S' to 20D: 

S,' r+ 2i gi 

4 0.57203 89722 13442 71450 
5 0.57389 54208 99232 95873 
6 0.57490 71974 38611 66585 
7 0 .57551 84223 73258 12347 
8 0.57591 56011 77306 92889 
9 0.57618 81210 76479 02991 

10 0.5763:8 31609 74208 28424 

The use of the 7-poinit formula in (1) or (2), where jo = 10, upon S/, gave an an- 
swer of 0.57721 56E64) 0143 ... which is correct to a unit in the 13th decimal 
(i.e., 5 places more thain (1/j)-extrapolation). Use of just the 4-point formula in 
(I) or (2) gave anr answer as good as 0.57721 56647 5 ... which is correct to 
within l' units iii the 10th dlecimal (i.e., 4 places more than (1/j)-extrapolation). 

C. Example 3. A (diflerelnt type of sequence is encountered in the evaluation of 

the (lefinite integral f d1 = log 2, whose value to 20D is 0.69314 71805 

599-15 309412. Onie ObviouS sequence to consider is S which is formed by dividing 
the interval (0, 1) into j equally spaced intervals and letting 5i be the sum of the 
rec tanles of height J/[l + (r-l)/j] and width 1/j, for r = 1(1)j, but that fails 
to behave as an even function of 1/j. However, the trapezoidal rule, or 

g' = ~('+ 1+ lj 1 + 2/j 1 + (j -1)/j 4 

according to the Euler-AMaclaurin formula (5), w-here now w = 1/j, a = 0, and 
b)oth f"'") is fixed(( as well as .fo(), being at the endpoints 1 and 0, is seen to have a 

truncating error th-tit is fornmllv al series in 1/j-. The values of Si', in either exact 
form, or to 201), are as follows: 

_______ ~ ~ ~ ~ ~ ~ i +i j | Sj' = Z (. + ~~J 2 +r/ +4 

4 1171/1680 = 0.96702 38095 23809 52381 
3 1753/2520 = 0.69563 49206 34920 63492 
6 96331/138860 = 0.69487 73448 "7344 87734 
7 2 30241/3 60360 = 0.69441 94694 19469 41947 
8 2 00107/2 8SS2S8 = 0.69412 18503 71850 37185 
9 5 66S03/8 16816 = 0.69391 76020 05837 29995 

10 1615 04821/2327 92360 = 0.69377 14031 75427 94323 

The 4- and 7-point (1/j)-extrapolation, jo = 10, gave values of 0.69314 86 ... and 
0.69314 7176 . c, correct to l 1 units in the 6th decimal and A unit in the 8th 
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decimal respectively. The (1/j2)-extrapolation was performed for every m-point 
formula from m = 2 through m = 7, with the following results: 

m value of S deviation m value of S deviation 

2 0.69314 81... 106 - 0.69314 71805 67... 1 
3 0.69314 7188... 10-8 6 0.69314 71805 6054... 10-12 
4 0.69314 71807 1... 1IO10-10 7 0.69314 71805 60046... 1-13 

The improvement over (1/j)-extrapolation in the 4- and 7-point results is by four 
and five places respectively. 

D. Example 4. A somewhat more sophisticated application of (1/j2)-extrapola- 
tion is in the summation of the series for Catalan's constant, or 

1 1 1 
=9 1-- + -5 

- 
f-2 32 52-72 

H. T. Davis [101 gives a full discussion of Catalan's constant, including an account 
of the earlier work of .J. W. L. Glaisher, and he also reprints Glaisher's 32-decimal 
value of T2 = 0.91596 55941 77219 01505 46035 14932 38. Since the series for 
T2 is absolutely convergent, it may be regrouped as 

-1 ~ ~ ~ ~ ~ ~ - 16r T2 =1+ (-2+ 12 + (-7 + 9)+ + ( 4-)'+ (+ 12 

The general term u, , r > 0, of T2 is equal to w16 - which is an odd function 
(16r2 - 1)2 

of r or 1/r. Thus, as in the preceding example, employing (5) with w = a = 1, the 
modified sum 

Si'-S3- 2uj= 1-E (16r2- 1)2 2 (16jl- -)) 

is again seen to be formally an even function of 1/j, having the same limit S which 
is approached by Sj,* The values of S/' to 20D are as follows: 

j 16r It 16] 
Sj' =1 I I 2 

r. 1 (16r2 - 1) - 2 (16j - 1)2/ 

4 0.91798 69831 73330 85103 
5 0.91724 36100 54163 02747 
6 0.91684 71757 66868 06945 
7 0.91661 06554 47552 003321 
8 0.91645 81601 71966 79489 
9 0.91635 40724 61230 031205 

10 0.91627 98501 91732 37910 

* Although in Example 4 we know the explicit formula for f f(x) dx, we may expect this 

principle to be applicable also in cases where f f(x) dx, f(x) odd, or for that matter also fj(P) 

for odd p, is not known in closed form, and where Sj' may still be regarded formally as a series 
in 1/j2. 
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Use of the 7-point (1/j)-extrapolation, jo = 10, upon either S or Si', while not 
identical in accuracy, because now the difference of 1(16j/( 16j2 - 1)2) is no longer an 
exact polynomial in 1/j, gave results very close to each other, namely 0.91596 
55973 ... and 0.91596 55980 . .. with respective deviations of 3 - 10-8 and am 10-8. 
The use of (1/j2)-extrapolation, i.e., (1) or (2), for m = 7, while giving the poorer 
answer of 0.91596 74 ... with a deviation of 2- 10-6 in working with the Si se- 
quence (as was to be expected), gave upon working with the S' sequence the highly 
accurate 0.91596 55941 7714 ..., which is correct to 4. 10-13, showing a gain in 
accuracy of around 5 places. 

5. Formulas for Partial Summation. Given the first ten terms of a sequence 

Si which behaves as an even function of 1/j, we might wish to find by (1/j2)-extrap- 
olation S., n > 10, instead of going to the limit as j -4 x. The purpose of this 
section is to improve what was accomplished in [2] where just (1/j)-extrapolation 
was employed. The m-point formula for S,, which occurs usually as a sum of the 
form EZ=o Ur , is obtained by setting x = 1/n in the Lagrange interpolation coeffi- 
cients whose fixed points are 1/jo2, 1/(jo - 1)2, ... , 1/(jo - m + 1)2. In the 
present instance, ill order to avoid too much tabulation, since now besides jo and 
m, n is also a variable, being no longer just oo, we consider a choice of jo and m 
which shall be suitable for most problems and which shall give a substantial in- 
crease inl accuracy over the (l/j)-extrapolation formulas previously given which 
were based upon ji, = 10 and m = 7 [2]. Thus it is natural to take jo = 10 and 
in = 7 for these present formulas also. The argument n = 11(1)25(5)100, 200, 500, 
1000, and all (oefficients are given exactly. This range of n is not quite so extensive 
as in flie previous paper because the arguments 1/j2 in place of 1/j, j = 4, 5, * * 
10, iF,increase, the labor ill computing the exact forms, which also have consider- 
ably greater hulk in figures. To find S,, S(n), we employ the extrapolation 
formula ill tile following formi: 

10 

(o; S(n) E Alj(n)Sj. 
j=4 

Every set of coeflicients A,(li) is given in the exact fractional form of Cj(n)/D(n) 
where D(n) is tile least common denominator for each n. Thus it may help the 
computer to have 

10 

(7) s(ki) = (1,'D(n)) E Cj(n)Sj 
ij4 

In ((6) and (7) the jo = 10 is understood as well as m = 7. When also n is under- 
stood, we may employ for (7) the somewhat more concise 

10 

(7') = (lID) E CjSj. 
j=4 

In (7), or (7'), the D(it), or D, is given also in the form of factors having no more 
than 10 digits, exclusive of terminal 0's, to facilitate the divisions on a ten-bank 
desk calculator. The C,(n) and D(n) are shown in Table 4. 
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The coefficients Aj(n) _ Cj(n)/D(n) were calculated directly from the formula 
10 

*12 iJJ (n2 k 
(8) Aj(n) =Jk- 

TI (j2 - k2) 

k-4 

where k = j is absent from H'. Both the calculation of A j(n) and the determina- 
tion of D(n) was facilitated by expressing each of the factors in the right member of 
(8) in terms of powers of primes. 

To facilitate the use of (8) for desired values of n other than in this present 
table, we notice that we may express Aj(n) as 

10 

(9) A (n) = Bj *II' (n k), where 
nl'2 

12 

(10) Bj I(2 2k) 

k-4 

is independent of n. The exact, as well as 30 decimal, values of the fundamental 
quantities Bj are given in the following Schedule 1. 

SCHEDULE 1 

10 
][ j j2 /-n k, *2 

/ k-4 

4 65536 0.01077 70418 88152 99926 41103 75221 
60 81075 

5 -9 65625 = -0.62730 63998 75844 32028 87647 33209 
155 67552 

6 2 36196 9.43840 15984 01598 40159 84015 98402 
25025 

7 - 
3841 

8720= -54.91570 11329 03951 53140 25117 94669 2520 46080 

8 618 73905 = 142.81482 33272 41627 89522 26664 64497 
_3 1381 59609 

9 -3 138810 596 = -166.81830 92541 16626 40764 80794 74705 1881 15200 

10 3 5 = 71.09731 48193 65042 96325 41775 64463 5 49423 

6. Illustrations of Partial Summation. 
A. Example 5. Suppose that in Example 1 above, instead of passing to the limit 

as j X-+ to obtain 7r, we wished to calculate S2o0, or the semi-perimeter of a 20- 
sided regular polygon from the semi-perimeters of the 4- through 10-sided regular 
polygons. We have S20 = 20 sin 90, whose value to 20D is 3.12868 93008 04617 
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38020. Using the same values of Si as in Example 1, we find by the earlier method 
of (1/j)-extrapolation [2] S20 = 3.12868 93076 .. . which is correct to around a 
unit in the 8th decimal. But use of the present tables for (1/j2)-extrapolation in (6) 
or (7), for n = 20, yields the highly accurate S20 = 3.12868 93008 04617 359 
correct to about 2 units in the 17th decimal, showing a gain of around 9 places. 

B. Example 6. As an illustration of a different type of problem that does not 
correspond to one in complete summation, consider the case where from the first 
few known zeros of some higher mathematical function, we wish to obtain the value 
of some later zero, say the nth. As will be seen below, there are circumstances when 
it is preferable to choose as the sequence Sj, j < jo, from which to extrapolate, 
some suitable even function of 1/j which may not be a function of the jth root, and 
yet from Sj, j > jo, the jth root, is readily obtainable. 

Consider the problem of finding the later zeros of the spherical Bessel functions 
J2m+i(Z) from either tabulated earlier zeros or some other suitable function of m. 
In the general asymptotic formula for z, n), the nth zero of J,(z) cos a - Y,(z) sin a, 
namely, 

(11) 
f 

= 
( + v- -) at- 8{(n 2 -v 

-) - 3) ..[1 

(n1) (4P 2 _ 1)(28v2 

3848(n + 2v- ) r - 3 - 

set a 0 and = 2m + a. Then from (11) it is apparent that 

(12) Sn+m- (n + m)[z2m+i- (n + m) r] 

has a formal expansion in even powers of 1/ (n + m), which could serve as the basis 
of an extrapolation formula. 

However, after searching for ready-made tables of z (n)iX none were found capa- 
ble of testing the full potentialities of Table 4. To avoid extra labor, we shall first 
illustrate this principle of (1/v2)-extrapolation with a smaller example limited to 
the available published 6D values of z (n) as far as n = 6 [12]. The problem is to 
calculate z(n) for n = 6, whose published value is 24.727566, from the four preced- 
ing values of z() = 11.704907, z(" = 15.039665, z(4) = 18.301256 and z() = 

21.525418. In other words, since m = 2, the problem is to find Ss from St, S5 , S6 
and S7 , from which z/ is found from (12). From (8), with fl'lkw replaced by 

IT/7 ~ AQ\= 9AO 5 4 6 875 A(\ 19 683 'k4, we find A4(8 ) = -D,j As(8) = 158 y344 A6(8) = -196 sand A, (8 )= 
3 from which 8s = 74 Aj(8)Sj = -3.241393. Finally, from (122), z 6) is 

found to be 24.727567, which deviates by only 1068 from the published value.* 
Comparing with (1/i)-extrapolation based upon those same values of S4 - S87 
and where A4(8) - -4, A5(8) = 42 , A6(8) = -A1, A7(8) = H_ we find Ss = 

-3.241225, from which z(') is found to be 24.727588, which deviates by 0.000022 
from the published value. 

* Since we started with 6D values, it is not possible to estimate from this example the 
possibly higher theoretical accuracy in (1/p2)-extrapolation, which is just the truncation error 
when the example is done with a sufficiently large number of places both initially and in the 
course of the work. 
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For a similar example employing Table 4, and revealing the full accuracy of (6) 
or (7), we choose a modification of Sn+m, say Sn+m, where 

(13) Sn+m = (n + m) [Z2+ - (n + m)7r], 
-(n) 

and where nlOw Z2m+i I instead of being the nth zero of J2m+i(X), is defined as a pre- 
assigned number of terms of the right member of (11) (for a = 0, v = 2m + 2) 
which is the same for every n. For the lowest values of n, there will be considerable 
deviation between the true value of the root z2.+q and the function 2gn) which is 
(n. + m)7r + an exact odd polynomial in 1/(n + m), making Sn+m an exact even 
polynomial in 1/(n + m). But at the inconvenience of having to compute Sn+m for 
the initial values of n, we may employ (6) or (7) to extrapolate for Sn+m for some 
larger n to get 2(n) A which will agree with the true value of the root z m) j to very 
high accuracy. Taking (11) as far out as 1/{(n + 1v - j)7r - al9, we have for 
a = 0, v = 2m + - and lu 42 = (4m + 1)2, 

- - -1 _ (,uA- 1)(7,i -31) (,- 1)(83,.A2- 9821A + 3779) 
Sn+m 327r 3 277r3(n + M)2 15 21%r5(n + 

M))4 

_ (- 1)(6949iA' - 153855,.s2 + 1585743-G 6277237) 
(14) 105 215 7r7 (n + m)e 

A- 1)(70197iA' - 24 79316,23 + 480 10494, 2 
- 5120 62548. + 20921 63573)* 

40320 - 2"1 7r9(n + m)8 

Suppose that the problem is to calculate the 14th zero of J5/2(z) or z(14). Then 
m = 1, and we should wait to find 815 using Table 4 upon S4 - So1, after which 
we obtain 2(2) from (13).** From (14) and then (13), 2(14) which is equal to Z(14) 

to arousia 14D, is found to be 47.06014 16127 6054. A quick examination of the 
ratios of stuccessive terms in (14) indicates without having to compute the 
1/(n + 'n)'0 ternm that, to 14D, Z(14) is actually 47.06014 16127 6053. Following 
are the calculate(d values of Si, foi j = n + 1 = 4(1)10, to 16D (last figure ap- 
proximate): 

4 -0.I97371 85140 72535 8 
5 -0.96680 12788 75286 8 
6 -0.96311 73960 26803 8 
7 -0.96092 04667 12625 8 
8 -0.95950 42113 72512 2 
9 -0.95853 75688 13022 8 

10 -0.95784 82845 01448 5 

Employing the older (1/j)-extrapolation, we find S15 = -0.95622 28677 507 ... 

and from (13), 5/2 = 47.06014 16126 6 which agrees with the true value of 
* The coefficients through 1/(n + ?1)6 are from Watson [111, and the coefficient of 1/(n + m)8 

is from Bicklev and Miller [13]. 
** This particular problem could, of course, be set up equally efficiently computationwise 

byr writing Sn+1 = a, + a,{(n + 1)2 + *-- + a,/(n + 1)2r, where as is independent of n. But 
this present method works as long as we know somehow the values of Si . 
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Z(12) to a unit in the 10th decimal (12th significant figure). But the (1/j2)-extrapo- 
lation yields S15 = -0.95622 28662 9517 ... and from (13), (14 = 47-.06014 
16127 6055 . . . which almost agrees with the true value of z(14) to 14 decimals (16 
significant figures). 
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