Improved Formulas for Complete and Partial Summation of Certain Series

By Herbert E. Salzer and Genevieve M. Kimbro

Abstract

In two previous articles one of the authors gave formulas, with numerous examples, for summing a series either to infinity (complete) or up to a certain number n of terms (partial) by considering the sum of the first j terms S, or some suitable modification S_{j}^{\prime}, closely related to S_{j}, as a polynomial in $1 / j$. Either S_{∞} or S_{n} was found by m-point Lagrangian extrapolation from $S_{j_{0}}, S_{j_{0-1}}, \cdots$, $S_{j_{0-m+1}}$ to $1 / j=0$ or $1 / j=1 / n$ respectively. This present paper furnishes more accurate m-point formulas for sums (or sequences) S_{j} which behare as even functions of $1 / j$. Tables of Lagrangian extrapolation coefficients in the variable $1 / j^{2}$ are given for: complete summation, $m=2(1) 7, j_{0}=10$, exactly and $20 \mathrm{D}, m=11$, $j_{0}=20,30 \mathrm{D}$; partial summation, $m=7, j_{0}=10, n=11(1) 25(5) 100,200,500$, 1000, exactly. Applications are made to calculating π or the semi-perimeters of many-sided regular polygons, Euler's constant,

$$
1+\sum_{r=1}^{j}\left\{\frac{-1}{(4 r-1)^{2}}+\frac{1}{(4 r+1)^{2}}\right\}=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\cdots \quad \text { for } j=\infty
$$

(Catalan's constant), calculation of a definite integral as the limit of a suitably chosen sequence, determining later zeros of $J_{\nu}(x)$ from earlier zeros for suitable ν, etc. A useful device in many cases involving sums of odd functions, is to replace S_{j} by a trapezoidal-type S_{j}^{\prime} which is seen, from the Euler-Maclaurin formula, to be formally a series in $1 / j^{2}$. In almost every example, comparison with the earlier ($1 / j$)-extrapolation showed these present formulas, for 7 points, to improve results by anywhere from around 4 to 9 places.

1. Introduction. In two earlier papers, [1, 2], one of the authors gave tables for both complete summation (all terms, to infinity) and partial summation (up to a certain number of terms) of certain kinds of slowly convergent series. In the case of partial summation, divergent series were also included, provided that a suitable auxiliary series could be found of the desired slowly convergent type and simply related to the original divergent series. The essential idea in both cases is to regard the sequence S_{j}, the sum of the first j terms of the series, as the values for $x=1 j$ of an interpolable function $S(x)$ to which the slight extrapolation from specified S_{j}, to $j=\infty(x=0)$ or to $j=k(x=1 / k), k>j_{0}$ where $S_{j_{0}}$ is the last specified S_{j}, yields good accuracy. The approximating formula for $S(. x)$ was an m-point Lagrange polynomial of the $(m-1)$ th degree in x which at $x=1 / j$ assumes the prescribed value S_{j}, for the last m values of j ending at $j_{0}=5,10,15$ or 20 , from which we extrapolated to either $j=\infty(x=0)$ or $j=k>j_{0}(x=1 / k)$. Numerous examples which yielded surprisingly high accuracy for a variety of sequences S, in both complete and incomplete cases, attested to the wide applicability of considering S_{j} a smooth function of $1 / j$, even when we were in complete ignorance as to the
actual analytic expression for $S_{j}=S(1 / j)$ or of a theoretical justification for considering $S(1 / j)$ as an approximate polynomial in $1 / j$.

However, a still further improvement in m-point formulas for both complete and partial summation is applicable to a wide class of sequences where $S_{j} \equiv S(1 / j)$ behaves like an even function of $1 / j$. Thus by taking x^{2} as argument instead of x, in an m-point Lagrangian extrapolation formula for $x=0$ (complete summation) or a value close to 0 (partial summation) based upon those same final m values of S_{j}, we should get accuracy equivalent to $(2 m-1)$ th degree instead of $(m-1)$ th degree. As will be seen from the illustrations below, the resulting improvement is often quite impressive.

There is no hard and fast classification of all the varied problems to which these newer formulas are applicable. The reason is that even if a problem does not seem offhand to involve a sequence of that even-function type, often with a very slight transformation, regrouping, or alteration, one sees that it really is amenable to this more accurate treatment.

Of course, every sequence to which these improved extrapolation formulas for arguments $1 / j^{2}$ are particularly applicable can also be handled by the earlier formulas employing arguments $1 / j$, because any polynomial in x^{2} is also a polynomial in x, but with considerably less accuracy for the same number m of points and the same last $j=j_{0}$. But the converse is not true-we cannot in general expect these newer summation formulas to work well when applied indiscriminately to sequences where the earlier method may give very high accuracy. One way of realizing this is to think of the non-constant part of a well-behaved function of x near $x=0$ being approximated by $C x$. Extrapolation employing $x^{2}=y$ as the variable, near $x=0$, is like extrapolation for \sqrt{y} based upon a polynomial approximation in the variable y. But, as anybody who has attempted to interpolate in a table of square roots near zero has found out, \sqrt{y}, although continuous at $y=0$, possesses a singularity due to an infinite derivative.
2. Other Related Articles. The idea of the extrapolation to $x=0$ for argument $y=x^{2}$ has been employed for just the linear case in the well-known " h^{2}-extrapolation process", or "deferred approach to the limit", which has been extensively treated in the literature on the numerical solution of differential equations (first introduced by L. F. Richardson [3, 4]). The argument x or h corresponds to two conveniently small values of a mesh-length, say h_{1} and h_{2}. Richardson's process has been generalized to higher powers beyond h^{2} by several writers, notably G. Blanch, [5] and H. C. Bolton and H. I. Scoins [6]. However, the only reference that was encountered by the writer which was concerned with problems where the approximation might be considered as a purely even function of h having more than a single term, has been M. G. Salvadori [7]. Besides some sets of 2-point coefficients for h^{2} and h^{4}-extrapolation, Salvadori tabulates 3 -point coefficients for (h^{2}, h^{4})- and (h^{4}, h^{6})- extrapolation, and 4-point coefficients for $\left(h^{2}, h^{4}, h^{6}\right)$ - and (h^{4}, h^{6}, h^{8})-extrapolation. The values of h are in the form $1 / n_{i}$, where n_{i} are sets of small integers ranging from 2 to 8 . Salvadori gives applications to numerical differentiation and integration, as well as to some boundary value problems and characteristic value problems.
3. Formulas for Complete Summation. In choosing a j_{0} suitable for most complete summation purposes, we wish to obtain a substantial increase in accuracy over the use of the earlier formulas in [1], which has already been proved to be very accurate, without having coefficients that might be too cumbersome. It is also desirable to give exact values rather than decimal values, because in highly accurate formulas the theoretical or truncation error might be considerably smaller than the computing error arising from the use of rounded decimal entries. But we must also take account of the fact that the fixed points $1 / j^{2}$ in place of the older $1 / j$ makes the exact fractional form of the extrapolation coefficients have around twice as many digits in both numerator and denominator, which adds considerably to the amount of time to do an example.

In the present paper it seems that a very convenient choice is $j_{0}=10$, for all cases ranging from the 2 -point through the 7 -point. In other words we give formulas for linear through sextic Lagrangian extrapolation formulas for functions of the variable $y=x^{2}$ taken at $x=1 / j$, or arguments $y=1 / j^{2}$ at $j=10,9, \cdots, 10-$ $m+1$ for $m=2(1) 7$. This is equivalent to quadratic through twelfth degree accuracy for even functions in $x=1 / j$. The extrapolation formula to obtain the complete sum S from the partial sums $S_{10}, S_{9}, \cdots, S_{10-m+1}$ is the very simple

$$
\begin{equation*}
S \sim \sum_{i=0}^{m-1} A_{10,10-i}^{(m)} S_{10-i} \tag{1}
\end{equation*}
$$

The coefficients $A_{10,10-i}^{(m)}$ are given in Table 1 in exact fractional form $B_{10,10-i}^{(m)} / D_{10}^{(m)}$, so that (1) may be most conveniently employed as

$$
\begin{equation*}
S \sim\left(1 / D_{10}^{(m)}\right) \sum_{i=0}^{m-1} B_{10,10-i}^{(m)} S_{10-i} \tag{2}
\end{equation*}
$$

In no case through $m=7$, does $D_{10}^{(m)}$ have more than ten digits exclusive of final zeros, which is convenient in the division. The values of $A_{10,10-i}^{(m)}$ are given also to 20 decimals in Table 2.

Although the 7 -point formulas for $j_{0}=10$ are very accurate, as will be apparent from the examples below, we give also in Table 3 for possible use in some kind of isolated key calculation where extreme accuracy is sought, even at the expense of considerable computing labor, the coefficients in the 11-point formula, ending at S_{20}, given exactly, to be employed in

$$
\begin{equation*}
S \sim\left(1 / D_{20}^{(11)}\right) \sum_{i=0}^{10} B_{20,20-i}^{(20)} S_{20-i} \tag{3}
\end{equation*}
$$

Formula (3) is exact for any even polynomial in $x=1 / j$ up to the 20 th degree. To avoid too much non-essential numerical work, no illustrations were given of the use of Table 3 , since the resulting accuracy is so high by comparison with the results of using Table 1 or 2 , that an excessively large number of significant digits is needed to reveal its full extent. But Table 3 should be kept in reserve for a summation problem requiring unusual precision.

The formula for $A_{j_{0}, j_{0}-i}^{(m)}$ is obtained rather simply from the well-known definition of the m-point Lagrangian interpolation coefficients where we have fixed points $1 / j_{0}{ }^{2}, 1 /\left(j_{0}-1\right)^{2}, \cdots, 1 /\left(j_{0}-m+1\right)^{2}$ and set the variable $y=x^{2}=1 / j^{2}$ equal to 0 to correspond to $j=\infty$.

Table 1

(4)

$$
A_{j_{0}, j_{c}-i}^{(m)}=\frac{(-1)^{m-1}\left(j_{0}-i\right)^{2 m-2}}{\prod_{k=0}^{m-1}\left\lfloor\left(j_{0}-k\right)^{2}-\left(j_{0}-i\right)^{2}\right\rfloor},
$$

where in $\Pi^{\prime}, k=i$ is omitted.

4. Illustrations of Complete Summation.

A. Example 1. Considering the circle as the limiting case of inscribed regular polygons of j sides, as $j \rightarrow \infty$, the quantity π is the limit of the semi-perimeter, $j \sin \alpha$, where $\alpha=180^{\circ} / j=\pi / j$, as $j \rightarrow \infty$. ${ }^{*}$ Now the approximation $S_{j}=j \sin \alpha=$

[^0]Table 2

Table 3

$$
A_{20,20-i}^{(11)}=B_{20,20-i}^{(11)} / D_{20}^{(11)}
$$

$B_{20,10}^{(11)}=$	7409620000000000000000000
$B_{20,11}^{(11)}=$	$-353761548335317085478290644$
$B_{20,12}^{(11)}=$	6494597408685613132491522048
$B_{20,13}^{(11)}=$	$-62006031926092918507419235023$
$B_{20,14}^{(11)}=$	$34801603765215035629 \quad 2377247744$
$B_{20,15}^{(11)}=$	$-1219414605237160606384277343750$
$B_{20,16}^{(11)}=$	2736597020828851477615382364160
$B_{20,17}^{(11)}=$	$-3925112765598026114959794197770$
$B_{20,18}^{(11)}=$	3473432245405086944700361605120
$B_{20,19}^{(11)}=$	$-1724815932099496291702121751885$
$B_{20,20}^{(11)}=$	367185100800000000000000000000
$\begin{aligned} D_{20}^{(11)} & = \\ & =\end{aligned}$	

$S(1 / j)$ is seen to be an even function of $1 / j$ which equals π for $1 / j=0$. Therefore we expect an m-point Lagrange polynomial approximation for variable $1 / j^{2}$ to be considerably more accurate than a polynomial in $1 / j$. Following are the values of the semi-perimeters $j \sin \alpha$ to 25 D , which were obtained from a table of $\sin \alpha$ to 30D originally published by Herrmann [8]. For $j=4(1) 6,9,10, \sin \alpha$ was copied
from Herrmann's table, and for $j=7,8, \sin \alpha$ was computed by Taylor's theorem employing Herrmann's entries as key values:

j	$s_{j}:$ Semi-perimeter $=j \sin \alpha$			
4	2.82842	71247	46190	09760

In the above values of S_{j}, as well as S_{j} given in the other examples, the accuracy of the last few places, although highly probable, is still not absolutely guaranteed. However, in every example the values of S_{j} are certainly correct up to the number of places needed to guarantee that the "computational error" in the final answer (which is due to the error in the S_{j} multiplied by the extrapolation coefficients $\left.A_{10, j}^{(m)}\right)$ is appreciably less than the deviation of the answer from the true value. This latter "truncuting error" is thus made to stand out clearly, and it indicates the theoretical accuracy of the extrapolation formula, regardless of the number of places carried in the work. In practice we do not often know at the outset of an example just how many placess are needed in the S_{j} to assure us that the computing error will be dominated by the truncating error. Sometimes when the theoretical accuracy turns out to be unexpectedly fine, the example must be done again, carrying more places, to prevent the computing error from obscuring the truncating error.

The results of the extrapolations employing (1) or (2), for $m=7$, gave for π, (whose true value to 20 D is 3.14159265358979323846), the answer 3.14159 26535 8979:3 $179 \ldots$ which is correct to within a unit in the 16 th decimal. The extent of the improvement over the earlier ($1 / j$)-extrapolation formulas is apparent from the result of $3.14159280 \ldots$ obtained by the corresponding 7 -point $(1 / j)$ extrapolation coefficients, which deviates from π by $1 \frac{1}{2}$ units in the 7 th decimal. In other words, the error in the use of this newer formula is only around $0.4 \cdot 10^{-9}$ of that in the older one. The greater power of this newer method in this present example may be further illustrated even for $m=4$, where $\left(1 / j^{2}\right)$-extrapolation yields $3.141592650 \ldots$, or aceuracy to around $\frac{1}{3}$ of a unit in the 8th decimal, whereas the corresponding 4-point $(1 / j)$-extrapolation formula gives no better than 3.1411 \ldots, which is off by $\frac{1}{2}$ of a unit in the 3rd decimal. In fact, the answer even by 2-point $\left(1 / j^{2}\right)$-extrapolation, namely $3.1413 \ldots$, is still better than the above 3.1411....

It is interesting to note that the use of $\left(1 / j^{2}\right)$-extrapolation on the semi-perimeters gives this great improvement only for the inscribed polygons, and it will not work well for the circumscribed polygons, upon which it was also tried. A reason that would lead us to expect poor extrapolation results, even though the corresponding semi-perimeter $j \tan \alpha$ is still an even function of $1 / j$, is that the series for $\tan \alpha$ converges poorly by comparison with $\sin \alpha$. Thus for $\alpha=\pi / 4$, occurring in $S_{j}=S_{4}$, the remainder after the term involving the sixth power of $1 / j^{2}$, is con-
siderably greater for $j \tan \alpha$, so that the use of (1) or (2) for $m=7$ is not nearly so good as for $j \sin \alpha$.
B. Example 2. The sequence for Euler's constant

$$
\gamma=\lim _{j \rightarrow \infty}\left\{\sum_{r=1}^{j}(1 / r)-\log j\right\}=0.57721566490153286061 \text { to } 20 \mathrm{D}
$$

has been treated earlier by ($1 / j$)-extrapolation ([1], p. 358). Applying (1) or (2), for seven points, directly to $S_{j}=\sum_{r=1}^{j}(1 / r)-\log j$ yields the very inaccurate 0.593 , the reason being that S_{j} does not behave like an even function of $1 / j$. The older $(1 / j)$-extrapolation formulas, employing $j_{0}=10$, gave $0.5772141 \ldots$ and $0.5772156695 \ldots$ by the 4 - and 7 -point formulas with respective errors of around $1 \frac{1}{2} \cdot 10^{-6}$ and $\frac{1}{2} \cdot 10^{-8}$. To improve upon these results we must modify our S_{j} sequence into an even function of $1 / j$ having the same limit γ. This is easily accomplished by replacing the last $1 / r$ in the summation, namely $1 / r=1 / j$, by half its value, or $1 / 2 j$. At first sight there is an apparent motivation in that the new finite summation is suggestive (at one end anyhow) of the more accurate trapezoidal rather than rectangular approximation to the integral $\int_{1}^{j}(1 / r) d r$. This trapezoidal motivation happens to lead to the correct choice in this present example, but in general it does not yield a sequence that is even in $(1 / j)$. The true motivation lies in the Euler-Maclaurin summation formula applied to $\log j$. The general formula is expressible as

$$
\begin{align*}
\frac{1}{w} \int_{a}^{a+j w} f(x) d x=\left(\frac{1}{2} f_{0}\right. & \left.+f_{1}+f_{2}+\cdots+f_{j-1}+\frac{1}{2} f_{j}\right)-\frac{w}{12}\left(f_{j}^{\prime}-f_{0}^{\prime}\right) \\
& +\frac{w^{3}}{720}\left(f_{j}^{\prime \prime \prime}-f_{0}^{\prime \prime \prime}\right)-\frac{w^{5}}{30240}\left(f_{j}^{v}-f_{0}^{v}\right)+\cdots[9] \tag{5}
\end{align*}
$$

Now (5) does not denote a complete equality, since the Euler-Maclaurin formula is an asymptotic expression that is given with a remainder term. Employing (5) heuristically for $w=1, a=1$ and $f(x)=1 / x$, the right member of (5), exclusive of the ($\frac{1}{2} f_{0}+f_{1}+\cdots+f_{j-1}+\frac{1}{2} f_{j}$) and an undisclosed remainder term, is an even function of $1 /(j+1)$, from which, replacing j by $j-1$,

$$
\int_{1}^{j}(1 / x) d x-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{j-1}+\frac{1}{2 j}\right)
$$

is an even function of $1 / j$, so that the same is true of the sequence

$$
\mathrm{S}_{j}^{\prime} \equiv\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{j-1}+\frac{1}{2 j}\right)-\log j
$$

whose limit, as $j \rightarrow \infty$, is also equal to γ.*
Since the older m-point ($1 / j$)-extrapolation formula is linear in S_{j} (or $S_{j}{ }^{\prime}$) and

[^1]yields exactly zero for any polynomial in $1 / j$ having no constant term, up to the ($m-1$)th degree, the above-mentioned 4 - and 7 -point results will not be changed by use of $S_{j}{ }^{\prime}$ instead of S_{j}. But the improvement is very noticeable when $S_{j}{ }^{\prime}$ is employed with $\left(1 / j^{2}\right)$-extrapolation. Following are the terms in the modified sequence $S_{j}{ }^{\prime}$ to 20 D :

j	$S^{\prime}=\sum_{r=1}^{j-1} \frac{1}{r}+\frac{1}{2 j}-\log j$
4	0.57203897221344271450
5	0.57389542089923295873
6	0.57490719743861166585
7	0.575 .51842237325812347
8	0.57591 56011 7730692889
9	0.57618812107647902991
10	0.57638316097420828424

The use of the 7 -point formula in (1) or (2), where $j_{0}=10$, upon $S_{j}{ }^{\prime}$, gave an answer of $0.57721566490143 \ldots$ which is correct to a unit in the 13 th decimal (i.e., 5 places more than ($1 / j$)-extrapolation). Use of just the 4 -point formula in (1) or (2) gave an answer as good as $0.57721566475 \ldots$ which is correct to within $1_{2}^{\frac{1}{2}}$ units in the 10 th decimal (i.e., 4 places more than ($1 / j$)-extrapolation).
C. Example 3. A different type of secpuence is encountered in the evaluation of the definite integral $\int_{0}^{1} \frac{1}{1+x} d x=\log 2$, whose value to 20 D is 0.6931471805 $599.15309+2$. One obvious sequence to consider is S_{j} which is formed by dividing the interval $(0,1)$ into j equally spaced intervals and letting S_{j} be the sum of the rert:ungles of height $1 /[1+(r-1) / j]$ and width $1 / j$, for $r=1(1) j$, but that fails to behave as an even function of $1 / j$. However, the trapezoidal rule, or

$$
S_{j}^{\prime}=\frac{1}{j}\left(\frac{1}{2}+\frac{1}{1+1 / j}+\frac{1}{1+2 / j}+\cdots+\frac{1}{1+(j-1) / j}+\frac{1}{4}\right)
$$

arcording to the Fuler-Maclaurin formula (5), where now $w=1 / j, a=0$, and both $f_{j}{ }^{(p)}$ is fixed as well as $f_{0}{ }^{(p)}$, being at the endpoints 1 and 0 , is seen to have a truncating error that is formally a series in $1 / j^{2}$. The values of $S_{j}{ }^{\prime}$, in either exact form, or to 201 , are as follows:

${ }^{j}$	$S_{i^{\prime}}=\frac{1}{j}\left(\begin{array}{l}1 \\ i\end{array}+{\underset{r=1}{j-1}}_{\Sigma_{1}+1}^{1+r / j}+\frac{1}{4}\right)$				
\pm		1171/1680	$=0.69702$	3809523809	52381
5		1753/25:0	$=0.69563$	4920634920	63492
6		$9631 / 13860$	$=0.69487$	7344877344	87734
7		2 , $30241 / 360360$	$=0.694+1$	$9+69+19+69$	41947
8		$200107 / 2 \mathrm{SS} 288$	$=0.69+12$	1850371850	37185
9		5 66S03/8 16816	$=0.69391$	7602005837	29995
10	1615	04821/2327 922560	$=0.69377$	1403175427	94323

The 4 - and 7 -point $(1 / j)$-extrapolation, $j_{0}=10$, gave values of $0.6931486 \ldots$ and $0.693147176 \ldots$, correct to $1 \frac{1}{2}$ units in the 6th decimal and $\frac{1}{2}$ unit in the 8th
decimal respectively. The $\left(1 / j^{2}\right)$-extrapolation was performed for every m-point formula from $m=2$ through $m=7$, with the following results:

m	talue of S	deciation	m	ralue of S	deriation
2	0.69314 81...	10^{-6}	5	0.69314 71805 67...	10^{-11}
3	0.69314 7188...	10^{-8}	6	$0.69314718056054 . .$.	${ }^{\frac{3}{5}} \cdot 10^{-12}$
4	$0.69314718071 \ldots$	$1 \frac{1}{2} \cdot 10^{-10}$	7	$0.693147180560046 \ldots$	10^{-13}

The improvement over ($1 / j$)-extrapolation in the 4 - and 7 -point results is by four and five places respectively.
D. Example 4. A somewhat more sophisticated application of $\left(1 / j^{2}\right)$-extrapolation is in the summation of the series for Catalan's constant, or

$$
T_{2}=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots
$$

H. T. Davis [10] gives a full discussion of Catalan's constant, including an account of the earlier work of J. W. L. Glaisher, and he also reprints Glaisher's 32-decimal value of $T_{2}=0.91596559417721901505460351493238$. Since the series for T_{2} is absolutely convergent, it may be regrouped as
$T_{2}=1+\left(-\frac{1}{3^{2}}+\frac{1}{\overline{5}^{2}}\right)+\left(-\frac{1}{7^{2}}+\frac{1}{9^{2}}\right)+\cdots+\left(-\frac{1}{(4 r-1)^{2}}+\frac{1}{(4 r+1)^{2}}\right)+\cdots$.
The general term $u_{r}, r>0$, of T_{2} is equal to $\frac{-16 r}{\left(16 r^{2}-1\right)^{2}}$, which is an odd function of r or $1 / r$. Thus, as in the preceding example, employing (5) with $w=a=1$, the modified sum

$$
S_{j}^{\prime}=S_{j}-\frac{1}{2} u_{j}=1-\sum_{r=1}^{j-1} \frac{16 r}{\left(16 r^{2}-1\right)^{2}}-\frac{1}{2}\left(\frac{16 j}{\left(16 j^{2}-1\right)^{2}}\right)
$$

is again seen to be formally an even function of $1 / j$, having the same limit S which is approached by S_{j}.* The values of $S_{j}{ }^{\prime}$ to 20 D are as follows:

	$S_{i^{\prime}}=1-\sum_{r=1}^{j-1} \frac{16 r}{\left(16 r^{2}-1\right)^{2}}-\frac{1}{2}\left(\frac{16 j}{\left(16 j^{-}-1\right)^{2}}\right)$
4	0.91798698317333085103
5	0.91724361005416302747
6	0.916847175766868 06945
7	0.91661065544755203321
8	0.91645816017196679489
9	0.91635407246123031205
10	0.91627985019173237910

* Although in Example 4 we know the explicit formula for $\int_{1}^{j} f(x) d x$, we may expect this principle to be applicable also in cases where $\int_{1}^{j} f(x) d x, f(x)$ odd, or for that matter also $f_{j}^{(p)}$ for odd p, is not known in closed form, and where $S_{j}{ }^{\prime}$ may still be regarded formally as a series in $1 / j^{2}$.

Use of the 7-point ($1 / j$)-extrapolation, $j_{0}=10$, upon either S_{j} or $S_{j}{ }^{\prime}$, while not identical in accuracy, because now the difference of $\frac{1}{2}\left(16 j /\left(16 j^{2}-1\right)^{2}\right)$ is no longer an exact polynomial in $1 / j$, gave results very close to each other, namely 0.91596 $55973 \ldots$ and $0.9159655980 \ldots$ with respective deviations of $\frac{1}{3} \cdot 10^{-8}$ and $\frac{2}{3} \cdot 10^{-8}$. The use of $\left(1 / j^{2}\right)$-extrapolation, i.e., (1) or (2), for $m=7$, while giving the poorer answer of $0.9159674 \ldots$ with a deviation of $2 \cdot 10^{-6}$ in working with the S_{j} sequence (as was to be expected), gave upon working with the S_{j}^{\prime} sequence the highly accurate $0.91596559417714 \ldots$, which is correct to $\frac{4}{5} \cdot 10^{-13}$, showing a gain in accuracy of around 5 places.
5. Formulas for Partial Summation. Given the first ten terms of a sequence S_{j} which behaves as an even function of $1 / j$, we might wish to find by $\left(1 / j^{2}\right)$-extrapolation $S_{n}, n>10$, instead of going to the limit as $j \rightarrow \infty$. The purpose of this section is to improve what was accomplished in [2] where just ($1 / j$)-extrapolation was employed. The m-point formula for S_{n} which occurs usually as a sum of the form $\sum_{r=0}^{n} u_{r}$, is obtained by setting $x=1 / n^{2}$ in the Lagrange interpolation coefficients whose fixed points are $1 / j_{0}{ }^{2}, 1 /\left(j_{0}-1\right)^{2}, \cdots, 1 /\left(j_{0}-m+1\right)^{2}$. In the present instance, in order to avoid too much tabulation, since now besides j_{0} and m, n is also a variable, being no longer just ∞, we consider a choice of j_{0} and m which shall be suitable for most problems and which shall give a substantial increase in accuracy over the ($1 / j$)-extrapolation formulas previously given which were based upon $j_{0}=10$ and $m=7$ [2]. Thus it is natural to take $j_{0}=10$ and $m=7$ for these present formulas also. The argument $n=11(1) 25(5) 100,200,500$, 1000 , and all coefficients are given exactly. This range of n is not quite so extensive as in the previous paper because the arguments $1 / j^{2}$ in place of $1 / j, j=4,5, \cdots$, $10, n$, increase the labor in computing the exact forms, which also have considerably greater bulk in figures. To find $S_{n} \equiv S(n)$, we employ the extrapolation formula in the following form:

$$
\begin{equation*}
S(n)=\sum_{j=4}^{10} A_{j}(n) S_{j} \tag{6}
\end{equation*}
$$

Every set of coefficients $A_{\jmath}(n)$ is given in the exact fractional form of $C_{j}(n) / D(n)$ where $D(n)$ is the least common denominator for each n. Thus it may help the computer to have

$$
\begin{equation*}
S(n)=(1 / D(n)) \sum_{j=4}^{10} C_{j}(n) S_{j} \tag{7}
\end{equation*}
$$

In (6) and (7) the $j_{0}=10$ is understood as well as $m=7$. When also n is understood, we may employ for (7) the somewhat more concise

$$
S_{n}=(1 / D) \sum_{j=4}^{10} C_{j} S_{j}
$$

In (7), or (7^{\prime}), the $D(n)$, or D, is given also in the form of factors having no more than 10 digits, exclusive of terminal 0 's, to facilitate the divisions on a ten-bank desk calculator. The $C_{j}(n)$ and $D(n)$ are shown in Table 4.
TABLE $4 \quad A_{j}(n) \equiv C_{i}(n) / D(n)$

n	$C_{4}(n)$	$-C_{6}(n)$	$C_{0}(\underline{n})$	n
11	43352326144	2760009765625	46900952211456	11
12	296353792	18554687500	307606553856	12
13	410572029952	25392089843750	413645240180736	13
14	31159484416	1909179687500	30700232669664	14
15	734707843072	44690078125000	711537902862336	15
10	2999100375040	181372070312500	2865355049168640	16
17	987132466298880	59) 417490234375000	932859939485859840	17
18	2025366487040	121440429687500	1896971166810720	18
19	5148305491230720	3076997717285156250	4786289074131296250	19
20	335176138752	19978054687500	309671912146170	20
21	29803449155584	1772320556040625	27390459389829120	21
22	2557 65176 64768	1517940429687500	23399583861545424	22
23	114869974073344	(805710937500000	1046829253359699792	23
24	5176200003584	3065215820312500	4701150962581248	24
25	182773407023104	10798394687500000	165506054940721152	25
30	474723909632	27916789062500	425381413163616	30
35	19948269408878592	1169850667324218750	17764318561923588096	35
40	556142267727872	$\begin{array}{llll}32 & 55672 & 19140 & (62500\end{array}$	493 29102 4467284736	4)
45	1105180850388992	64619477152343750	$97763645 \quad 2269367296$	45
50	314670096960192512	183828147045703125() 0	277821110839238305056	50
55	12260 777802830751744	71581221397 (61250 00000)	$108096884776236090)(65472$	55
(\%)	2101434821804032	$\begin{array}{llll}122 & 62754 & 30078 \\ 12500\end{array}$	185073872 20503 06816	60
65	199146823415964368896	116167104924678900625000	175243060920654778318848	65
70	12631021514194944	153428338507812500	2313 (69100 7448904572	70
75	$2705353085 \quad 2913840128$	1577253554818720703125	23777936 (68838 83951 47264	75
80	11381761539236016768	66344101846148437500	9599933 39136 721161955.4	80
85	198436 (j-1585 4609) 70144	115 (54971 16095 $432(\mathrm{il} 71875$	1742718738781280203236872	85
90	21912513180336128	$127689772(0273+37500$	1923830729 920 60152264	90
95		99150366090583006093375000	14937 2.4378 14420 81022 44352	05
100	27624 63417 03513 53850	16094161344406640 (i250)	$24241878509754+215 \quad 71328$	100
200	1709077 (55240 57655 37792	99503809782147148437500	$14975 \quad 38393174010204349696$	200
500	821056152187304118283534336	477934787727939325199609937500	719128.179365397789136585613508	500
1000		10827 (09010 573654461056.489$) 80078125000$	1 (62905 318:2 3098981858033518 155S9 49632	1000

Table 4-Continucd

n	$-C_{7}(n)$						$C_{8}(n)$							$-C_{9}(n)$								n
11				32215	59596	03275				1	05S:7	$99+17$	34400					1	76151	30190	31997	11
12					46692	18547						35.371	54048							01747	03873	12
13			2	(06745	13455	15117				7	92S02	85020	78S48						04949	07557	$4(6163$	13
14				19442	Of520	05475					51307	02125	05000						75493	41510	13713	14
15			4	44575	22425	25195					63S88	61612	85120					10	50602	94005	59083	15
16			17	71857	77781	80125					67921	56241	92000						66611	34021	56463	16
17			5721	68313	(i)299	25965				15871	91324	1341S	53696					20054	82572	16792	85845	17
18			11	55895	58305	65507					79469	79994	S2SS0					39	73673	$74+57$	90385	18
19			29008	53338	24768	97375				79250	25550	94548	48000					98190	51035	15985	81345	19
20			1	86850	45156	98995				5	07620	03723	05920					6	24536	$43+02$	04353	20
21			164	(i5175	07237	67125				445	23348	97725	44000						(32440	88208	18755	21
22			140	21515	98577	29411					66930	76095	60448					459	7548)	79673	51217	22
23			625	57532	85960	23526				1679	36327	39394	84672					2036	0574()	52839	83961	23
24			28	02756	84854	84925					02445	18160	52800						64378	27268	21583	24
25			984	70190	61233	70365				2629	30613	59658	59840					3167	20040	82195	30606	25
30			2	51281	64849	05545				6	65213	12473	90720					7	93146	$8(729$	95923	30
35		1	04501	17314	93605	18895			2	75278	96205	65685	04320					26324	47322	86907	02113	35
40			2894	18470	98839	01945				7600	17480	22670	13120					8976	92198	970.40	61283	40
45			5725	63039	44139	07145				15004	08135	79219	76320					17679	14149	53778	25463	45
50		16	25027	50478	80584	46845			42	52100	27375	85566	51520				50	01673	53498	68138	89743	50
55		631	69035	64270	86020	26140			1651	10814	77140	03986	02240				1939	75352	82211	59219	40191	55
60			10807	62370	15787	49045				28225	74314	90409	26720					33129	03631	38264	76023	60
65		10227	95435	17712	52380	23885			26694	90068	27877	68605	08160				31309	54142	10812	86737	65769	65
70			13497	88556	74941	83765				35211	73936	27440	74240					41275	01812	78067	39991	70
75		1386	70343	48980	87560	96555			3616	01493	44620	31514	82880				4236	72540	71523	7032.1	98717	75
80			29847	70830	98366	73455			151	97106	54462	40406	73280					99104	37154	06907	98677	80
85		10158	07546	77808	62362	83515			26472	62121	05369	52358	50240				30995	56816	28717	48010	98541	85
90			12115	49286	84852	73055				92113	94047	04369	86880					41934	10964	90406	39717	90
95		87035	63171	86878	79918	38615			226725	41556	61183	16566	11840				265335	47692	58504	18153	45331	95
100		1412	31425	76716	92152	80985			3678	43631	10728	17912	21760				4304	05053	46689	91848	03459	100
200		87160	02410	86950	16496	14895			226755	16422	07280	30737	20320				264979	65188	21093	77455	55413	200
500	418434	18289	57096	52184	08777	48535	10	88253	25190	80068	46170	98172	82560			71247	700401	14305	40998	13477	44429	500
1000	94784863514	29742	74436	93853	54534	22965	2465030	27747	754660	71683	78425	93408	61440		79387	20044	435172	31507	54843	52414	47671	1000

Table 4-Continued

n	$C_{10}(n)$		$D(n)$	*
11	1430000000000000		$448795257871103=(190333)(2357947691)$	11
12	5687500000000		$905541451776=(131072)(6908733)$	12
13	6006000000000000		$605750213184506=(742586)(815730721)$	13
14	385429687500000		$27967309452992=(14144)(19773$ 26743)	14
15	8104096000000000		$458783050781250=(1953125)(234896922)$	15
16	30439062500000000	1	$420569023086592=(165376)(8589934592)$	16
17	9406540000000000000		$373965250425606=(53954566)(6975757441)$	17
18	18372148437500000		$648709264237248=(186048)(3486784401)$	18
19	44894850000000000000	1429	$801437716740006=(1599559954)(893871739)$	19
20	2830327500000000		$82688000000000=82688 \times 10^{9}$	20
21	245050000000000000		$655272510302199=\left(\begin{array}{ll}365793\end{array}\right)(19773$ 26743)	21
22	205640982421875000	5	$247452245877512=(2225432)(2357947691)$	22
23	906192000000000000	21	$914624432020321=(6436343)(34048$ 25447)	23
24	40174062500000000		$927274446618624=(6908733)(1342$ 17728)	24
25	1398700160000000000	30	$994415283203125=(5078125)(6103515625)$	25
30	3460644687500000		$66430125000000=66430125 \times 10^{6}$	30
35	141427098384000000000	2494	$830226519531250=(1261718750)(1977326743)$	35
40	3874391020500000000		$749568000000000=64749568 \times 10^{9}$	40
45	7609 150640000000000		$582264097656250=(35156250)(3486784401)$	45
50	2148569723612812500000	33721	$923828125000000=(5525)(6103515625) \times 10^{6}$	50
55	83208552922880000000000	1281116	$270966189453125=(1953125)(3059969)(214358881)$	55
60	13405 14196115004500000000	- 215	$410752000000000=215410752 \times 10^{9}$	60
65	1340546811802016000000000	20112800	$047141800781250=\left(\begin{array}{ll}19 & 53125)\end{array}\left(\begin{array}{ll}12623962)\end{array}(815730721)\right.\right.$	65
70	$\begin{array}{lllll} & 17660 & 88429 & 01562 & 50000 \\ 1811 & 88546 & 04312 & 00000 & 00000\end{array}$	262 ,6 74891	$613708054687500=(132812500)(1977326743)$ $048690951171875=(300625)(1121931)(6103515625)$	70
75	181188546043120000000000	2674891	$948699951171875=(390625)(1121931)(6103515625)$	75
80	7608787219247500000000	111669	$149690000000000=(13)(8589934592) \times 10^{0}$	80
85	13245417816190506000000000	19344878	$970519408203125=(1953125)(24137569)(4103$ 38673)	85
90	1 46077 099199281250000	2124	$759244359375000=(609375000)(3486784401)$	90
95 100	11332568971632480000000000	164269466	$649441636718750=(3906250)(47045881)(893871739)$	95 100
100	183789011117302500000000	2656250	$000000000000000=265625 \times 10^{16}$	100
200	11298707515963367500000000	160000000	$000000000000000=16 \times 10^{22}$	200
500	5418417238559042309377500000000	76293945312500	$000000000000000=(2048)(6103515625)^{2} \times 10^{6}$	500
1000	1227206948676101836245334122500000000	17265625000000000000	$000000000000000=17265625 \times 10^{27}$	1000

The coefficients $A_{j}(n) \equiv C_{j}(n) / D(n)$ were calculated directly from the formula

$$
\begin{equation*}
A_{j}(n)=\frac{j^{12}}{n^{12}} \frac{\prod_{k=4}^{10}\left(n^{2}-k^{2}\right)}{\prod_{k=4}^{10}\left(j^{2}-k^{2}\right)} \tag{8}
\end{equation*}
$$

where $k=j$ is absent from Π^{\prime}. Both the calculation of $A_{j}(n)$ and the determination of $D(n)$ was facilitated by expressing each of the factors in the right member of (8) in terms of powers of primes.

To facilitate the use of (8) for desired values of n other than in this present table, we notice that we may express $A_{j}(n)$ as

$$
\begin{equation*}
A_{j}(n)=B_{j} \cdot \frac{\prod_{k=4}^{10}\left(n^{2}-k^{2}\right)}{n^{12}}, \text { where } \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
B_{j}=\frac{j^{12}}{\prod_{k=4}^{10}\left(j^{2}-k^{2}\right)} \tag{10}
\end{equation*}
$$

is independent of n. The exact, as well as 30 decimal, values of the fundamental quantities B_{j} are given in the following Schedule 1.

Schedule 1

j	$\mathrm{B}_{j}=\mathrm{j}^{12} /{ }_{k=4}^{10} \mathrm{M}^{\prime}\left(\mathrm{j}^{2}-k^{2}\right)$						
4	$\frac{65536}{6081075}=$	0.01077	70418	88152	99926	41103	75221
5	$-\frac{9765625}{15567552}=$	-0.62730	63998	75844	32028	87647	33209
6	$\frac{236196}{25025}=$	9.43840	15984	01598	40159	84015	98402
7	$-\frac{13841287201}{252046080}=$	-54.91570	11329	03951	53140	25117	94669
8	$\frac{268+35+56}{1879605}=$	142.81482	33272	41627	89522	26664	64497
9	$-\frac{31381059609}{188115200}=$	-166.81830	92541	16626	40764	80794	74705
10	$\frac{39062500}{549423}=$	71.09731	48193	65042	96325	41775	64463

6. Illustrations of Partial Summation.

A. Example 5. Suppose that in Example 1 above, instead of passing to the limit as $j \rightarrow \infty$ to obtain π, we wished to calculate S_{20}, or the semi-perimeter of a 20 sided regular polygon from the semi-perimeters of the 4 -through 10 -sided regular polygons. We have $S_{20}=20 \sin 9^{\circ}$, whose value to 20 D is 3.128689300804617
38020. Using the same values of S_{j} as in Example 1, we find by the earlier method of ($1 / j$)-extrapolation [2] $S_{20}=3.1286893076 \ldots$ which is correct to around a unit in the 8th decimal. But use of the present tables for $\left(1 / j^{2}\right)$-extrapolation in (6) or (7), for $n=20$, yields the highly accurate $S_{20}=3.128689300804617359 \ldots$, correct to about 2 units in the 17 th decimal, showing a gain of around 9 places.
B. Example 6. As an illustration of a different type of problem that does not correspond to one in complete summation, consider the case where from the first few known zeros of some higher mathematical function, we wish to obtain the value of some later zero, say the n th. As will be seen below, there are circumstances when it is preferable to choose as the sequence $S_{j}, j \leqq j_{0}$, from which to extrapolate, some suitable even function of $1 / j$ which may not be a function of the j th root, and yet from $S_{j}, j>j_{0}$, the j th root, is readily obtainable.

Consider the problem of finding the later zeros of the spherical Bessel functions $J_{2 m+\frac{1}{2}}(z)$ from either tabulated earlier zeros or some other suitable function of m. In the general asymptotic formula for $z_{\nu}{ }^{(n)}$, the nth zero of $J_{\nu}(z) \cos \alpha-Y_{\nu}(z) \sin \alpha$, namely,

$$
\begin{align*}
z_{\nu}^{(n)}=\left(n+\frac{1}{2} \nu-\frac{1}{4}\right) \pi-\alpha- & \frac{4 \nu^{2}-1}{8\left\{\left(n+\frac{1}{2} \nu-\frac{1}{4}\right) \pi-\alpha\right\}} \\
& -\frac{\left(4 \nu^{2}-1\right)\left(28 \nu^{2}-31\right)}{384\left\{\left(n+\frac{1}{2} \nu-\frac{1}{4}\right) \pi-\alpha\right\}^{3}}-\cdots[11] \tag{11}
\end{align*}
$$

set $\alpha=0$ and $\nu=2 m+\frac{1}{2}$. Then from (11) it is apparent that

$$
\begin{equation*}
S_{n+m} \equiv(n+m)\left[z_{2 m+\frac{1}{2}}^{(n)}-(n+m) \pi\right] \tag{12}
\end{equation*}
$$

has a formal expansion in even powers of $1 /(n+m)$, which could serve as the basis of an extrapolation formula.

However, after searching for ready-made tables of $z_{2 m+\frac{\xi}{(n)}}^{(n)}$, none were found capable of testing the full potentialities of Table 4 . To avoid extra labor, we shall first illustrate this principle of $\left(1 / \nu^{2}\right)$-extrapolation with a smaller example limited to the available published 6 D values of $z_{9 / 2}^{(n)}$ as far as $n=6$ [12]. The problem is to calculate $z_{9 / 2}^{(n)}$ for $n=6$, whose published value is 24.727566 , from the four preceding values of $z_{9 / 2}^{(2)}=11.704907, z_{9 / 2}^{(3)}=15.039665, z_{9 / 2}^{(4)}=18.301256$ and $z_{9 / 2}^{(5)}=$ 21.525418. In other words, since $m=2$, the problem is to find S_{3} from S_{4}, S_{5}, S_{6} and S_{7}, from which $z_{9 / 2}^{(6)}$ is found from (12). From (8), with $\prod_{k=4}^{10}$ replaced by $\prod_{k=4}^{\prime 7}$, we find $A_{4}(8)=-\frac{91}{2112}, A_{5}(8)=\frac{546875}{10} \frac{4}{81344}, A_{6}(8)=-\frac{19683}{11264}$ and $A_{7}(8)=$ $\frac{823543}{3684488}$ from which $S_{8}=\sum_{j=4}^{7} A_{j}(8) S_{j}=-3.241393$. Finally, from (12), $z_{9 / 2}^{(6)}$ is found to be 24.727567 , which deviates by only 10^{-6} from the published value.* Comparing with $(1 / \nu)$-extrapolation based upon those same values of $S_{4}-S_{i}$. and where $A_{4}(8)=-\frac{1}{8}, A_{5}(8)=\frac{125}{12}, A_{6}(8)=-\frac{81}{32}, A_{7}(8)=\frac{34}{12} \frac{3}{8}$, we find $S_{8}=$ -3.241225 , from which $z_{9 / 2}^{(6)}$ is found to be 24.727588 , which deviates by 0.000022 from the published value.

[^2]For a similar example employing Table 4, and revealing the full accuracy of (6) or (7), we choose a modification of S_{n+m}, say \bar{S}_{n+m}, where

$$
\begin{equation*}
\bar{S}_{n+m}=(n+m)\left[\bar{z}_{2 m+\xi}^{(n)}-(n+m) \pi\right], \tag{13}
\end{equation*}
$$

and where now $\bar{z}_{2 m+\frac{1}{2}}^{(n)}$, instead of being the nth zero of $J_{2 m+\frac{1}{k}}(x)$, is defined as a preassigned number of terms of the right member of (11) (for $\alpha=0, \nu=2 m+\frac{1}{2}$) which is the same for every n. For the lowest values of n, there will be considerable deviation between the true value of the root $z_{2 m+\frac{1}{2}}^{(n)}$ and the function $\bar{z}_{2 m+\frac{1}{2}}^{(n)}$ which is $(n+m) \pi+$ an exact odd polynomial in $1 /(n+m)$, making \bar{S}_{n+m} an exact even polynomial in $1 /(n+m)$. But at the inconvenience of having to compute \bar{S}_{n+m} for the initial values of n, we may employ (6) or (7) to extrapolate for \bar{S}_{n+m} for some larger n to get $\bar{z}_{2 m+\frac{1}{2}}^{(n)}$ which will agree with the true value of the root $z_{2 m+\frac{1}{2}}^{(n)}$ to very high accuracy. Taking (11) as far out as $1 /\left\{\left(n+\frac{1}{2} \nu-\frac{1}{4}\right) \pi-\alpha\right\}^{9}$, we have for $\alpha=0, \nu=2 m+\frac{1}{2}$ and $\mu \equiv 4 \nu^{2}=(4 m+1)^{2}$,

$$
\begin{align*}
\bar{S}_{n+m}= & -\frac{\mu-1}{2^{3} \pi}-\frac{(\mu-1)(7 \mu-31)}{3 \cdot 2^{7} \pi^{3}(n+m)^{2}}-\frac{(\mu-1)\left(83 \mu^{2}-982 \mu+3779\right)}{15 \cdot 2^{10} \pi^{5}(n+m)^{4}} \\
& -\frac{(\mu-1)\left(6949 \mu^{3}-153855 \mu^{2}+1585743 \mu-6277237\right)}{105 \cdot 2^{15} \cdot \pi^{7} \cdot(n+m)^{6}} \tag{14}\\
& -\frac{(\mu-1)\left(70197 \mu^{4}-2479316 \mu^{3}+48010494 \mu^{2}\right.}{-512062548 \mu+2092163573)^{*}} .
\end{align*}
$$

Suppose that the problem is to calculate the 14 th zero of $J_{5 / 2}(z)$ or $z_{6 / 2}^{(14)}$. Then $m=1$, and we should want to find \bar{S}_{15} using Table 4 upon $\bar{S}_{4}-\bar{S}_{10}$, after which we obtain $\bar{z}_{5 / 2}^{(14)}$ from (13). ${ }^{* *}$ From (14) and then (13), $\bar{z}_{5 / 2}^{(14)}$ which is equal to $z_{5 / 2}^{(14)}$ to around 14 D , is found to be 47.06014161276054 . A quick examination of the ratios of successive terms in (14) indicates without having to compute the $1 /(n+m)^{10}$ term that, to $14 \mathrm{D}, z_{5 / 2}^{(14)}$ is actually 47.06014161276053 . Following are the calculated values of \bar{S}_{j}, for $j=n+1=4(1) 10$, to 16D (last figure approximate):

	\bar{s}_{i}			
4		-0.97371	85140	72535
	8			
5	-0.96680	12788	75286	8
6	-0.96311	73960	26803	8
7	-0.96092	04667	12625	8
8	-0.95950	42113	72512	2
9	-0.95853	75688	13022	8
10	$-0.9578+828+5$	01448	5	

Employing the older $(1 / j)$-extrapolation, we find $\bar{S}_{15}=-0.9562228677507 \ldots$ and from (13), $\bar{z}_{5 / 2}^{(14)}=47.06014161266 \ldots$ which agrees with the true value of

[^3]$z_{5 / 2}^{(14)}$ to a unit in the 10th decimal (12 th significant figure). But the ($1 / j^{2}$)-extrapolation yields $\bar{S}_{15}=-0.95622286629517 \ldots$ and from (13), $\bar{z}_{5 / 2}^{(14)}=47: 06014$ $161276055 \ldots$ which almost agrees with the true value of $z_{5 / 2}^{(14)}$ to 14 decimals (16 significant figures).
7. Acknowledgment. Most of the checking of the tables and the checking of all the examples was done by Mrs. Elizabeth P. Thompson, to whom the authors wish to express their appreciation.

Convair-Astronautics

San Diego, California

1. H. E. Salzer, "A simple method for summing certain slowly convergent series," J. Math. Phys., v. 33, 1955, p. 356-359.
2. H. E. SALzER, "Formulas for the partial summation of series," MTAC, v. 10, 1956, p. 149-156.
3. L. F. Richardson, "The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam," Philos. Trans. Roy. Soc. London, Ser. A, v. 210, 1910, p. 307-357.
4. L. F. Richardson \& J. A. Gaunt, "The deferred approach to the limit," Philos. Trans. Roy. Soc. London, Ser. A, v. 226, 1927, p. 299-361.
5. G. Blanch, "On the numerical solution of parabolic partial differential equations," J. Res. Nat. Bur. Standards, v. 50, 1953, p. 343-356.
6. H. C. Bolton \& H. I. Scoins, "Eigenvalues of differential equations by finite-difference methods," Proc. Cambridge Philos. Soc., v. 52, pt. 2, 1956, p. 215-229.
7. M. G. Salvadori, "Extrapolation formulas in linear difference operators," Proc. First U. S. Nat. Congress of Applied Mech., Edwards Bros., 1952, p. 15-18.
8. Herrmann, "Bestimmung der trigonometrischen Functionen aus den Winkeln und der Winkel aus den Functionen, bis zu einer beliebigen Grenze der Genauigkeit," Kaiserliche Akademie der Wissenschaften, Wien, Mathematisch-naturwissenschaftliche Classe, Sitzungsberichte, 1, pt. IV, 1848, p. 176-177. Reprinted in Table of Sines and Cosines to Fifteen Decimal Places at Hundredths of a Degree, Nat. Bur. Standards. Appl. Math. Ser. No. 5, 1949, p. 92-93.
9. E. Whittaker \& G. Robinson, The Calculus of Observations, 4th edition, Blackie and Son, London, 1954, p. 135.
10. H. T. Davis, Tables of the Higher Mathematical Functions, v. II, Principia Press, Bloomington, Indiana, 1935, p. 282, 284-285, 304. Davis cites the earlier work of J. W. L. Glaisher in relation to Catalan's constant in Mess. of Math., v. 6, 1876, p. 71-76, Proc. London Math. Soc., v. 8, 1877, p. 200-201, Mess. of Math., v. 42, 1913, p. 35-58.
11. G. N. Watson, Theory of Bessel Functions, 2nd edition, Cambridge University Press, 1952, p. 506
12. NBS, Tables of Spherical Bessel Functions, v. II, New York, Columbia University Press, 1947, p. 318.
13. W. G. Bickley \& J. C. P. Miller, "Notes on the evaluation of zeros and turning values of Bessel functions, II, The McMahon Series," Phil. Mag., s. 7, v. 36, 1945, p. 125.

[^0]: * Although this example affords a splendid illustration of the improvement of $\left(1 / j^{2}\right)$ extrapolation over ($1 / j$)-extrapolation, it suffers from the aesthetic defect of having the value of π occurring implicitly in every S_{i} in the various powers of α needed to compute $\sin \alpha$. In other words, there is definitely something "circular" in this example.

[^1]: * The reader is cautioned that the above heuristic demonstration is not to be understood as a proof that we have a convergent infinite series in ($1 / j^{2}$) from which we can "prove" that the "constant" term in S_{i} ' is γ by taking the limit as $j \rightarrow \infty$. The fallacy there would be in that there is no "constant" term because the $f_{0}, f_{0}^{\prime}, f_{0}^{\prime \prime}$ " \cdots terms in (5) yield for $f(x)=1 / x$ a divergent sequence. Actually $S_{i}{ }^{\prime}$ is defined only up to any fixed order derivative, say $f_{j-1}^{(p)}$, and it then consists of terms in $1 / j^{2}$, constant terms and an integral formula for the remainder.

[^2]: * Since we started with 6 D values, it is not possible to estimate from this example the possibly higher theoretical accuracy in ($1 / \nu^{2}$)-extrapolation, which is just the truncation error when the example is done with a sufficiently large number of places both initially and in the course of the work.

[^3]: * The coefficients through $1 /(n+m)^{6}$ are from Watson [11], and the coefficient of $1 /(n+m)^{8}$ is from Bickley and Miller [13].
 ** This particular problem could, of course, be set up equally efficiently computationwise by writing $\bar{S}_{n+1}=a_{0}+a_{1 /}(n+1)^{2}+\cdots+a_{r} /(n+1)^{2 r}$, where a_{i} is independent of n. But this present method works as long as we know somehow the values of \bar{S}_{i}.

